Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Struct Funct ; 221(7): 3547-59, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26416171

RESUMO

What is the influence of sex and age on the quantitative cell composition of the human brain? By using the isotropic fractionator to estimate absolute cell numbers in selected brain regions, we looked for sex- and age-related differences in 32 medial temporal lobes (comprised basically by the hippocampal formation, amygdala and parahippocampal gyrus), sixteen male (29-92 years) and sixteen female (25-82); and 31 cerebella, seventeen male (29-92 years) and fourteen female (25-82). These regions were dissected from the brain, fixed and homogenized, and then labeled with a DNA-marker (to count all nuclei) and with a neuron-specific nuclear marker (to estimate neuron number). Total number of cells in the medial temporal lobe was found to be 1.91 billion in men, and 1.47 billion in women, a difference of 23 %. This region showed 34 % more neurons in men than in women: 525.1 million against 347.4 million. In contrast, no sex differences were found in the cerebellum. Regarding the influence of age, a quadratic correlation was found between neuronal numbers and age in the female medial temporal lobe, suggesting an early increase followed by slight decline after age 50. The cerebellum showed numerical stability along aging for both neurons and non-neuronal cells. In sum, results indicate a sex-related regional difference in total and neuronal cell numbers in the medial temporal lobe, but not in the cerebellum. On the other hand, aging was found to impact on cell numbers in the medial temporal lobe, while the cerebellum proved resilient to neuronal losses in the course of life.


Assuntos
Envelhecimento , Cerebelo/citologia , Neurônios/citologia , Caracteres Sexuais , Lobo Temporal/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Contagem de Células , Cerebelo/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/fisiologia , Lobo Temporal/fisiologia
2.
PLoS One ; 9(11): e111733, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25372872

RESUMO

Sex differences in the human olfactory function reportedly exist for olfactory sensitivity, odorant identification and memory, and tasks in which odors are rated based on psychological features such as familiarity, intensity, pleasantness, and others. Which might be the neural bases for these behavioral differences? The number of cells in olfactory regions, and especially the number of neurons, may represent a more accurate indicator of the neural machinery than volume or weight, but besides gross volume measures of the human olfactory bulb, no systematic study of sex differences in the absolute number of cells has yet been undertaken. In this work, we investigate a possible sexual dimorphism in the olfactory bulb, by quantifying postmortem material from 7 men and 11 women (ages 55-94 years) with the isotropic fractionator, an unbiased and accurate method to estimate absolute cell numbers in brain regions. Female bulbs weighed 0.132 g in average, while male bulbs weighed 0.137 g, a non-significant difference; however, the total number of cells was 16.2 million in females, and 9.2 million in males, a significant difference of 43.2%. The number of neurons in females reached 6.9 million, being no more than 3.5 million in males, a difference of 49.3%. The number of non-neuronal cells also proved higher in women than in men: 9.3 million and 5.7 million, respectively, a significant difference of 38.7%. The same differences remained when corrected for mass. Results demonstrate a sex-related difference in the absolute number of total, neuronal and non-neuronal cells, favoring women by 40-50%. It is conceivable that these differences in quantitative cellularity may have functional impact, albeit difficult to infer how exactly this would be, without knowing the specific circuits cells make. However, the reported advantage of women as compared to men may stimulate future work on sex dimorphism of synaptic microcircuitry in the olfactory bulb.


Assuntos
Bulbo Olfatório/citologia , Caracteres Sexuais , Idoso , Idoso de 80 Anos ou mais , Contagem de Células , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroglia/citologia , Neurônios/citologia , Bulbo Olfatório/anatomia & histologia , Tamanho do Órgão , Fatores Sexuais
3.
J Neurosci Methods ; 226: 171-183, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24503023

RESUMO

Despite a massive research effort to elucidate Alzheimer's disease (AD) in recent decades, effective treatment remains elusive. This failure may relate to an oversimplification of the pathogenic processes underlying AD and also lack of understanding of AD progression during its long latent stages. Although evidence shows that the two specific neuropathological hallmarks in AD (neuronal loss and protein accumulation), which are opposite in nature, do not progress in parallel, the great majority of studies have focused on only one of these aspects. Furthermore, research focusing on single structures is likely to render an incomplete picture of AD pathogenesis because as AD involves complete brain networks, potential compensatory mechanisms within the network may ameliorate impairment of the system to a certain extent. Here, we describe an approach for enabling integrative analysis of the dual-nature lesions, simultaneously, in all components of one of the brain networks most vulnerable to AD. This approach is based on significant development of methods previously described mainly by our group that were optimized and complemented for this study. It combines unbiased stereology with immunohistochemistry and immunofluorescence, making use of advanced graphics computing for three-dimensional (3D) volume reconstructions. Although this study was performed in human brainstem and focused in AD, it may be applied to the study of any neurological disease characterized by dual-nature lesions, in humans and animal models. This approach does not require a high level of investment in new equipment and a significant number of specimens can be processed and analyzed within a funding cycle.


Assuntos
Doença de Alzheimer/patologia , Tronco Encefálico/patologia , Imunofluorescência/métodos , Imageamento Tridimensional/métodos , Imuno-Histoquímica/métodos , Idoso , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias/metabolismo , Encefalopatias/patologia , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Imunofluorescência/economia , Humanos , Imageamento Tridimensional/economia , Imuno-Histoquímica/economia , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Masculino , Pessoa de Meia-Idade , Vias Neurais/metabolismo , Vias Neurais/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Núcleos da Rafe/metabolismo , Núcleos da Rafe/patologia , Fatores de Tempo
4.
J Neurosci Methods ; 212(1): 72-8, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23017980

RESUMO

Isotropic fractionation is a quantitative technique that allows reliable estimates of absolute numbers of neuronal and non-neuronal brain cells. However, being fast for single small brains, it requires a long time for processing large brains or many small ones, if done manually. To solve this problem, we developed a machine to automate the method, and tested its efficiency, consistency, and reliability as compared with manual processing. The machine consists of a set of electronically controlled rotation and translation motors coupled to tissue grinders, which automatically transform fixed tissue into homogeneous nuclei suspensions. Speed and torque of the motors can be independently regulated by electronic circuits, according to the volume of tissue being processed and its mechanical resistance to fractionation. To test the machine, twelve paraformaldehyde-fixed rat brains and eight human cerebella were separated into two groups, respectively: one processed automatically and the other, manually. Both pairs of groups (rat and human tissue) followed the same, published protocol of the method. We compared the groups according to nuclei morphology, degree of clustering and number of cells. The machine proved superior for yielding faster results due to simultaneous processing in multiple grinders. Quantitative analysis of machine-processed tissue resulted in similar average numbers of total brain cells, neurons, and non-neuronal cells, statistically similar to the manually processed tissue and equivalent to previously published data. We concluded that the machine is more efficient because it utilizes many homogenizers simultaneously, equally consistent in producing high quality material for counting, and quantitatively reliable as compared to manual processing.


Assuntos
Encéfalo/citologia , Contagem de Células/instrumentação , Contagem de Células/métodos , Processamento Eletrônico de Dados/métodos , Neurônios/fisiologia , Análise de Variância , Animais , Núcleo Celular/fisiologia , Processamento Eletrônico de Dados/instrumentação , Humanos , Técnicas In Vitro , Indóis , Neuroglia/citologia , Neurônios/citologia , Fosfopiruvato Hidratase/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...